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Lecture 4

1 Multiple Tests on the Same Hypothesis

In the brain image example, we examine different areas of the brain, and we have a different

hypothesis for each test. In some applications we may have multiple tests on the same

hypothesis.

Example: To study whether eating breakfast is an important factor for living longer, multiple

research teams are at work. They may use different sampling plans, obtain different samples,

and conduct different statistical tests. Each study has a p-value. For example, two teams get

independent p-values p1 = 0.06 and p2 = 0.10.

Question: is there a good way to combine the information?

Remember: The p-value under the null distribution is a random variable, U(0, 1).

Discussion: To combine the p-values we may consider

• max{p1, p2}, ormin{p1, p2}.

• Recall that for the uniform random variable U , we have −2 log(U) ∼ χ2
2, and χ2 distribution

has the nice additivity property so −2 log p1− 2 log p2 ∼ χ2
4 under the null hypothesis. Then,

we have the “combined p-value”:

P (χ2
4 > current value of− 2 log p1 − 2 log p2) = P (χ2

4 > 10.23) = 0.037.



2 Hypothesis Testing When n is Very Large

Discussion: Suppose we are testing if the population mean θ = 0. When we increase the sample

size n to infinity, the power of the test at any alternative, that is, the probability of rejecting the

null under the alternative, goes to 1. In practice θ is often not exactly 0, but very small, say,

0.01, then, we would reject the null hypothesis eventually. So a slight difference from zero can be

detected by increasing the sample size.

Statistical significance from a test when n is very large might not mean very much. In those

cases, estimates or confidence intervals might tell a better story. We should look at the practical

significance of the difference from zero.

3 Modeling

Models are essential for statistical analysis. There are two types of models,

• theory-based models.

• convenience or data-driven models.

Given the sample, many models can be used. We should rule out the poor ones:

• those that are not convenient, too difficult to use.

• those that are not compatible with the data.

3.1 Linear Models

Example: consider we have two variables: the sales of ice creams (Yi), and the temperature (Xi)

on a given day. To examine if Y depends on X, a linear model is a convenient.
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A Linear Model: Yi = α + βXi + εi, and here α and β are unknown parameters, and εi are

random variables. We often assume εi ∼ N(0, σ2) with some parameter σ2.

Assumptions in Linear Models:

• Linear trend. The expectation of Y given X is a linear function of X.

• Independence.

• The distribution of εi is normal, with a common variance that does not depend on X.

These assumptions are chosen for convenience. Some of them are hard to check.

Checking the Assumptions: Take the residuals

ei = Yi − (α̂+ β̂Xi),

where α̂, β̂ are the least squares estimates. Then we plot the residuals to see if there is any trend.

• We can have the scatter plot of ei ∼ Xi.

– This scatter plot is useful for checking if the variance changes with the explanatory

variable. We would expect that the residuals scatter around the horizontal line at 0

with no apparent pattern, like in Figure 1(A).

– In Figure 1(B), there is a quadratic trend, so the simple linear model is not appropriate.

– In Figure 1(C), the variance is increasing with X, which violates the assumption that

the variance is a constant for different X.

• We can also check the scatterplot of ei versus the fitted values Ŷi = α̂+β̂Xi. This is equivalent

to the previous one when we only have one X, but useful when we have multiple X’s. So we

expect the same thing here: the residuals scatter around the horizontal line around 0 with no
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apparent pattern. For example, in Figure 1(D), there is one point far away from the others,

which is a potential outlier that needs to be investigated.

Principle: after fitting any statistical model, before jumping into conclusions, we should check

the residual plot to see if any assumption is violated, and to check if there are any potential outliers.

Outliers might be errors, and sometimes they represent something special.

Question: can we also use the scatter plot of ei ∼ Yi to check the assumptions?

Answer: no. Reason: We can show that ei and Xi or Ŷi are uncorrelated if the linear model

is true. But ei and Yi are correlated even if the model is true.

More discussion: we can not check all the assumptions. For the residual plot, we just need a

quick look to see if there is anything obviously “wrong”, that is, any major issue. We should not

be too demanding, that is, we should not try to look very hard for minor patterns.

Message from the article “negative height”: a very useful statistical model is not neces-

sarily a correct model in every aspect.

3.2 The Airline Data

Please refer to the pdf file (http://www.xuminghe.com/Airline-example.pdf).

Principle: We usually start from a simple model, then check the assumptions, detect potential

issues, and then update the model accordingly.

3.3 Goals of Modeling

Example: for the doctors to create the right vaccine against a virus, it is critical to identify the

important factors or genes. For this case, we aim to find the right model to do statistical analysis

to identify important factors or genes.

There are two main goals of statistical modeling:
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Figure 1: Residual Plots.
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• Model the relationship.

• Forecasting, prediction as in e the airline example.

Remark: these are two different problems. To model the relationship, we need aim for a right

model. But for prediction, we do not necessarily need the right model. The true model does not

necessarily gives the best prediction. The reason is that we need to estimate the parameters based

on a finite sample, and the estimation may be poorer for more complicated models.

Question: if the true model is

Y = α+ β1Xi + β2X2 + ε. (1)

From the three possible models in the following, would the true model (M1) do always better than

the other two?

M1 : Ŷ = α̂+ β̂1X1 + β̂2X2;

M2 : Ŷ = α̂+ β̂1X1;

M3 : Ŷ = α̂+ β̂2X2.

Discussion: the answer is no! The reasons are the parameters are unknown. With fewer

number of parameters, we could have better estimation. How good the prediction is depends on

two factors:

• How close the model is to the true model.

• How well you can estimate the parameters.

If we have Var(ε) = σ2, and if β2/σ is small, then Model M2 might give better prediction than M1.

Principle of parsimony: We favor simper models over larger models.
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